Int. J. Solids Structures Vol. 22, No. L1, pp. 1161-1175, 1986 0020-7683/86  $3.00+ .00
Printed in Great Britain. Pergamon Journals Ltd.

VARIATIONAL FORMULATION IN THE
GEOMETRICALLY NONLINEAR THIN ELASTIC
SHELL THEORYt

M. L. SzwaBowicz
Institute of Fluid-Flow Machinery of the Polish Academy of Sciences, 80-952 Gdansk, Poland

(Received 22 June 1984 ; in revised form 20 September 1985)

Abstract—The variational formulation for thin elastic shells undergoing large deflections is
discussed. No restrictions are imposed on the magnitude of the rotational part of the deformation
gradient, yet it is assumed that the strains remain small everywhere in the shell. Ten functionals and
associated variational principles are derived, including the Hu-Washizu, the Hellinger-Reissner,
the generalized complementary energy and the stationary potential energy principles. The total
Lagrangian description (TLD) is exclusively used.

1. INTRODUCTION

Within the theory of shells the variational approach was applied successfully first to its
simplest linear version. The literature concerning this topic is large, and Alumyie, Aynola
and Reissner, it seems, should be regarded as the earliest contributors to that field. For
references, see the books by Washizu[1), Abovski et al.[2] and Rozin[3], which contains an
exhaustive treatment of this and other related problems.

Since then, the variational setting for the shell theory was gradually extended to its
more complex versions like the nonlinear theory of shallow shells (cf. the early paper by
Aynola[4]) and, afterwards, the simplified versions of the moderate-rotation shell theory.
Recent papers[5-8] may be mentioned here. The paper by Schmidt and Pietraszkiewicz[9]
offers a profound study of variational principles within the complete version of the moder-
ate-rotation shell theory. In [9] the Hu-Washizu, the Hellinger-Reissner and many other
principles were derived on the basis of the principle of virtual work.

This paper will focus on the variational formulation of the general geometrically
nonlinear first-approximation theory of thin elastic shells. This means that no restrictions
are imposed on the rotational part of the deformation gradient (understood in the sense of
the polar decomposition), but it is assumed that all the eigenvalues of the strain tensor are
small in comparison with unity everywhere in the shell domain. Our chief goal is to pursue
a self-consistent variational approach to such theory, based on the Kirchhoff-type of stress
measures and the two-dimensional principle of virtual work as the fundamental static
postulate. This task was partially undertaken by Galimov in [10, 11], where some principles
of the Hu-Washizu, Reissner and Castigliano type were derived. However, those papers
neglected the problem of the potentiality of the external loads applied to the shell—a
question that appears, particularly in the case of the boundary moment, to be a factor
limiting the possibilities of construction of the appropriate functionals. Besides, the func-
tionals associated with those principles, though transformed to the undeformed con-
figuration as a whole, still contained some variables related to the deformed shell boundary
(cf. [12)) and thus were incompatible with purely Lagrahgian description. Variational
principles equivalent to the ones presented in this paper were brought out by Schmidt in
[13-16), where a whole family of functionals was derived according to a procedure developed
formerly in [9] for the moderate-rotation theory and the present author’s earlier results[12,
17-20). In particular, the functionals in {13-16] were based on a potential of the boundary
forces and moments discussed in [17] and corresponding to the dead-load tractions at the
lateral surface of the shell. This same type of potential was employed by the author in the
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functionals published in [12, 18-20]. Since this confines the applicability of the functionals
in question only to this specific load, we discuss in detail the general condition for the
existence of the boundary moment potential in this paper.

A different approach was suggested by Simmonds and Danielson[21] and recently
developed by Atluri[22] and Valid[23]. Their papers resort directly to the polar decomposi-
tion of the deformation gradient tensor and the functionals include pure stretches and
rigid rotations together with the corresponding conjugate stress measures as the independent
variable fields.

This paper extends the results presented in [12, 17-20], wherein the Hu-Washizu and
subsequent variational principles were derived to a more general context. This work is
particularly based on the papers [12, 20] containing the relations of the general geometrically
nonlinear theory of thin elastic shells reformulated in the entirely Lagrangian description
with displacements as the main independent variables. However, in accordance with the
remark made earlier we admit here a broader class of moments acting at the boundary of
the shell. In the following section we repeat briefly the basic relations derived in {12, 20].
Then, assuming the principle of virtual work as the starting point, a procedure is followed
to yield 10 functionals and associated variational principles. These functionals depend on
combinations of strain, displacement and stress fields. At first an initial functional I,
subject to some subsidiary conditions, is constructed. The resulting free functionals, eight in
number, are grouped in two equivalent families .# and #. The family # contains the Hu-
Washizu and the Hellinger—Reissner variational principles, whereas the family ¢ includes
the generalized complementary energy principle among the others. The accompanying free
functionals form a basis suitable for deriving further functionals, with or without subsidiary
conditions, and variational principles associated with them. For this end one should employ
the well-known techniques concerning variational problems in general (cf. [1-3, 9, 24-26)).
To exemplify this we derive the functional of the total potential energy I1.

The reduction of the present results to the consistently simplified versions of the
nonlinear thin elastic shell theory[27, 28] would lead to the appropriate families of varia-
tional principles and associated functionals, for example, it can be shown that if the
rotations occurring in the shell do not exceed the moderate-rotation range the functionals
presented here will reduce to those published in [9]. If, on the other hand, the rotations
around the tangent to the middle surface are large, whereas those around the normal
remain small, the Hu—Washizu functional derived here reduces to its simplified versions
given in [28] for various degrees of accuracy of the strain energy function.

2. PRELIMINARY RELATIONS

The main purpose of this section is to outline in brief the relations governing behavior of
a shell undergoing finite rotations but small strains within the range of the first-approximation
theory[29-31] and to put them into the form of a nonlinear boundary-value problem with
displacements as the basic independent variable. These relations were derived in detail in
[12, 20].

We shall clarify at first the calculus conventions adopted here. The composition of two
second-order tensors S and T will be denoted by ST = $%T,g, ® g*, whereas the full
contraction by S*T = $YT;. By 1 =g,® g’ we shall denote the identity (unit) tensor.
The symbols T', T*, T* denote the transpose, the symmetric part and the antisymmetric
(skew) part of the tensor T, respectively. We shall also employ the following operations :
cross product of a vector v and a second-order tensor T, denoted vxT =
v'T*(gix g) ® g = — (T'xv)' with a second-order tensor as a result; cross product of
two second-order tensors Sx T = SYT*g, ® (g, x g) ® g with a third-order tensor as a
result. In particular for the third-order Levi-Civita permutation tensor E = e’g, ® g, ® g
we have E = —1 x 1. Finally, we recall that every second-order antisymmetric tensor T* has
a unique representation in the form T° = vx 1 = 1 x v, where the axial vector v is equal to
v=—1E'T = —1e*T,g,. The following sequence of operations should be observed : the
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cross product must be performed prior to the composition and full contraction. In other
cases brackets will indicate the right order.

The shell 2 in the undeformed state occupies a simply connected region in %#°. Its
middle surface . is a regular simply connected surface delimited by a picce-wise regular
boundary contour €. The vector r = r(6%), a = 1, 2, is the position vector of the surface 4
and (" is a curvilincar parametrization with the corresponding natural basis a, = r,, (comma
denotcs differentiation).

In the sequel we shall consider differentiable tensor fields defined on .# and operators
acting between them. Let v, k= 1,..., N, and % be any finite-dimensional Euclidean
vector spaces and 7 = @ ., 7", be a tensor product space. Then the total differential of
a possibly nonlinear function T =T(), TeJ, u € %, is denoted by dT=T® V,du,
dTeJ, dued, where ( )V, = d( )/ou'g’ is the derivative operator and du = du'g,. The
gradient TV, = 0T/0u' ® g' is a tensor in the space 7 ® ¥*, where %* denotes the
conjugate space of %, and the partial differentiation with respect to «' should be applied to
the product T = v, @ v, ® - - - ® vy according to the Leibniz rule. If, further, ¥y = #* and
dim %* = 3 we define the divergence and curl as TV, = (6T/du’)g' and T x V,, = 8T /du’) x g',
respectively. Finally, whenever the space # is identical with T, i.e. a plane tangent to .#
at a point M € .#, we shall omit the subscript T}, in ( )V, writing simply ()V.

Now, let § = A4(8), 0@, £€E, be an operator acting between the Hilbert spaces ©
and E of tensor fields defined on the surface .#. Then 6§ = DA(6, 6¢) denotes its Giteaux
differential. However, further we shall abide by the traditional concepts referring to it as
to the variation of the operator 4. Whenever the operator DA is linear in 6 we shall write
o0& = (6A4/60)66, where 6 4/60 denotes the Gateaux derivative. For the precise mathematical
background of the notions just introduced, see, e.g. the monographs by Vainberg[32, 33].
We assume that all functions and operators we shall deal with are differentiable up to the
order needed.

Let us begin by introducing the fields inherent in the surface #. These area = a, ® a*—
the metric tensor, n—the unit normal vector, & = ¢*a, ® as—the surface permutation
tensor, b = —n ® V—the curvature tensor. Besides, v, t, n denote the Darboux orthonormal
triad along the contour € with t as the unit tangent vector. dA is the area element of the
surface .#, whereas ds the length element of the contour €. The following relations hold
true on the surface ./ :

r@V=a=1-n®n, =-—nxa=—axn=-nxl,

ge = —a, g8 =2, =—141x1-g

2.1
t=r, v=txn,

dd=¢- (dr, ® dr2)’ dr|, dl'zE TM'

These quantities describe the geometry of the undeformed surface .#. We assume that they
are known functions of the position vector r. Therefore the undeformed configuration of
the shell will serve for the reference configuration and this means adoption of the Lagrangian
description.

The shell 2 subjected to the action of some external system of forces will deform to
another configuration 2 with the middle surface .# delimited by the contour €. Quantities
pertinent to the surface ./ and equivalent to the ones already introduced on .# will be
represented by the same symbols with the addition of overbars, ie. T, &, #, OV, etc.
With this modification the relations (2.1) still hold true on the surface #. The linear
transformation mapping dre T, into dfe T, is a two-point surface deformation gradient
tensor

Fr=f@V=a+u®YV, (2.2)

and the vector field u = r—r is the displacement of the surface 4.
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The following equations link the quantities in both configurations:

d4
= — == ATYE E=J"! !
J Y $TET - ¢, g=J Tel,

A= Ux1Tel,  ()V= (),

(2.3)

R=txn®v+i@t+i®n=e®e+cosa(l —e ®e)+sinaex 1,
singe = vX ¥+t X t+nxi,

2coso-+1 =v P4t t+n i

The orthogonal tensor R in (2.3) describes the total rotation of the boundary element by
the angle « around the axis e and g, is the stretch of this element.

The relations (2.1-(2.3) depict the geometric aspect of the theory. When substituted
to the surface deformation measures {for justification of the measures assumed see [12,
20]): the surface strain tensor y and the change of curvature tensor y,

y=3TT-a), x=/I'"@GQV)+b(l+a"y) (2.4)

they yield the kinematic relations

7)) =@ Vy+iu®VyudV),

2.5
(W=mV+u® V)(mQ® V)+b[l1+a-y()], @3

where

m(u) = Jii = =31 x 1-Tel" = {e¥(a,+u,,) x (a5+u,p). (2.6)

The other aspect of the problem is related to the phenomena resulting from the action
of external forces on the shell. These forces depend in general on the actual configuration
2. Let us assume that the contour ¥ consists of two separate parts: €,—along which
the force B = B(u) and the moment k = k(a,e) per unit length are prescribed known
functions of the displacement u, the angle of the total rotation « and the axis e, respectively ;
and its completion €, with a fixed configuration of the shell boundary. Similar division can
be made on the middle surface 4. However, we neglect in further considerations the case
wherein some parts of # have prescribed geometry, because it leads to problems with
multiply-connected regions and seems of little practical importance. Thus we assume that
the whole surface .# is subject to the load p = p(u) per unit area. Now we can impose the
equilibrium condition in the global form, demanding the principle of virtual work to hold
true

” (N-57+M-5x)dA=” p'éudA+j;(B'5u+k'6w)ds,
rt ¥ ',

2.7
p=Fp, B=aB, k=ak @7)

Here N and M denote the Lagrangian internal force and moment tensors—the counterparts
of the Kirchhoff (or the second Piola—Kirchhoff) stress tensor in the three-dimensional
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theory of deformable continuum(34]. For an alternative approach, based on the Jaumann-
type of internal forces, see [21-23, 34].

Note the occurrence of the term dw = dwi in (2.7). It represents a small incremental
rotation of the boundary ¢lement in the actual state by an infinitesimal angle dw around
the axis i. Note also that in general dw does not coincide with d(ae). The equations linking
these terms and the boundary configuration variables can be derived from the condition
for the spin tensor dw x 1 = R'9R[17] and eqns (2.3)¢_s. We have

| . i .
b0 = —tx RO, +1(t 60) = > 1+ 2" e @t — —ex15(e), (28)
t

t*déw = v* IO, oa, = du,,.

Besides, from the identities i’ = 1 and #i*&, = 0 and (2.8); we can derive the following
expression for 4ii at the boundary

of = (t* )~ 5—'{(:': - du,,). 2.9

Having substituted (2.5), (2.8), and (2.9) to (2.7) and applying the Stokes theorem, the
principle of virtual work can be transformed to the equivalent form

—j‘j (TV+p)'éudA+L {[Tv—-B+[(F+txKk)R’] éu
i 4
+ (HTMyv+k-t)t* dw} ds— i Fi+t;xk)R -du; =0 (2.10)
iml

and the symbols used in (2.10) represent
T=TIN+M-bja]+(m® VM- [(TM)V]xTe
F= (5-' J‘t‘er)n .11
F;, = F(s—0)~F(s+0).
The condition (2.10) yields directly the local form of the Lagrangian equilibrium conditions :
the equilibrium equations on .#
TV+p=0, (2.12)

the natural boundary conditions along €

Tv—B+[(F+txkR7, =0,

(2.13)
JiTMv+k-t =0,

and the jump conditions

F‘+t,'Xk; =0 (2'14)
at the points M;e%€,, i = 1,..., N, at which either the moment k is discontinuous or the
contour €, has corners.

It remains to impose the geometric boundary conditions. This consists in prescribing
the position of the deformed boundary contour &. and the orientation of its Darboux
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orthonormal triad, #*, t*, ii*. However, in virtue of eqns (2.3)s, it suffices to specify
merely the oricntation of the unit normal @i*. Yet i itself must still satisfy the kinematic
constraint fi = € x (fi xt). Consequently, i is a function of t and some scalar parameter ¢,
i.e. i = f(t, ¢) and, thus, so is the rotation tensor R = R(t, ). This remark also concerns
the static boundary conditions (2.13), where R appears explicitly and implicitly in the
function k = k(a, €). However, it is not clear up to now whether there exists any standard
form of such a function. In [12, 17-20], where the parameter ¢ was assumed toben, =i -v,
the resulting expression for ii(t, n,) turned out to be nonunique. The same happens when ¢
is identified with the angle o of the total boundary rotation. To avoid these difficulties we
impose the conditions valid for any parameter used :

u—u*(s) =0,
i-t*xn*{t*,¢*)=0 along¥%,, (2.15)
u. —uf(s,) =0, k=1,...,K,atM,e¥,.

In (2.15), the expression t* = (1/a¥)(t+u*) should be substituted for t*. The condition
(2.15), prescribes the displacements at the corners of €,.

The equations displayed in this section form a system valid for arbitrary deformations
of the surface . They comprise two independent kinds of variables, namely variables of
geometric and static character. To bind this system up into a complete boundary-value
problem we still need the constitutive equations.

3. THE POTENTIALS AND THE INITIAL FUNCTIONAL

Apart from interpreting the principle of virtual work (2.7) as a balance condition, it
can also be viewed as a condition equating to zero a Gateaux differential

61=‘U (N‘5?+M‘5X—P'5“)d”4_j (B*ou+k-ow)ds 3.1

€

of some unknown functional / with the kinematic relations as constraints. The question,
whether there really exists such a functional, is equivalent to the problem of finding
potentials for the internal forces N, M and the external forces p, B, k treated now as
operators acting from the spaces of geometric variables to the conjugate spaces of forces.
General concepts concerning the potentiality of operators are broadly discussed in [32, 33]
and with specification to mechanics in [26, 34]. We only recall that if DA(8,68), 0 € @, exists
and is hemicontinuous in 8 and the domain © is convex, then the condition for potentiality
demands the equality

(DA(0,00,),00,> = (DA(8,50,),00,) (3.2)

to hold true. The corresponding functional follows from the formula
1
F) = f (A(z8),0) dr. (3.3)
0

Let us notice that according to (3.1) the potential of the internal forces N, M (or the
internal energy function) can only depend on the variables y and y. Formally this means
that the internal energy of the shell is determined solely by the deformation of the middle
surface #. This confines applicability of the theory to those deformations, in which the
principal strains remain small in comparison with unity everywhere in the shell. Otherwise
(3.1) ought to include additional variables describing the deformation across the thickness
h of the shall. Besides, let us consider only the elastic deformations. These restrictions
coincide well with the assumptions of the so-called first-approximation theory developed
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in [29-31]. Profiting directly from the results contained therein we may postulate the
existence of a two-dimensional strain energy density function defined per unit area of .#
in the approximate form

Z—EH-<® » ) 3.4
=3 Y 7+12x®x, (3.4)

where H denotes the fourth-order modified elasticity tensor[31]. Taking the variation of
(3.4) we can obtain the constitutive equations in the form

6T L _n
N-5;=hn ” M=5—X=Eﬂx (3.5)

typical for the linearly elastic materials.

As it seems impossible to characterize any universal class of potential loads p and B,
we assume that the corresponding potentials IT(u) and ®(u) exist, so that the condition (3.2)
is satisfied. For the particular case of the pressure load we refer the reader to [35-37]. Yet
we shall concentrate on the question of the potentiality of the moment k. This problem was
solved by Simmonds[38] for a rigid body in rotational motion in terms of the Rodrigues
vector B = 2tan («/2)e. This variable becomes singular any time « = nn. We present here
an alternative solution, free of this disadvantage.

Let us point out that the main difficulty here is due to the fact that the infinitesimal
rotation dw is not a Gateaux differential of any vector field. To overcome this we must
modify the expression for the work rate ¥ = k- dw with the aid of the relation (2.8),,
which substituted for dw yields

0¥ =k dw =k da, (3.6)
where the pseudo moment

a—sina cosa—
k=—F—ax@xk)+—
o o

xk+k (3.7)

belongs to a vector space conjugate to another space, whose members are the vectors a = «e.
Further we may apply the routine methods involving (3.2), which eventually results in the
condition for the potentiality of the moment in the local form

kxv,=0. (3.8)

Some important conclusions may be deduced from (3.8):

(i) the constancy of the moment k, i.e. k x V, = 0, does not suffice to guarantee the
existence of a potential ;

(ii) if k = ke with k = const the potential takes the simple form ¥(a) = ka ; moreover,
if e = t, then k is the bending moment and « is the winding angle of the shell around the
contour %;

(iii) if k = i x H with H = const, then a potential in the form ¥(ii) = H- (i —n) exists
and H corresponds to the resultant static moment of dead-load type tractions acting on the
shell lateral boundary surface 02 (see [17]).

There is still one important aspect, concerning operators and the related potentials,
closely connected with the complementary variational formulations. If an operator turns
out to be strictly monotone and potential, then the corresponding potential is strictly
convex[33). The converse is also true. On the other hand, strict monotonicity implies
invertibility of the operator—a property enabling effectuation of the Legendre involuntary
transformation{24-26). Since the strain energy density function is strictly convex by
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definition, there always exists such fourth-order tensor E that

1 12
y:-j’»E-N. x=~/~l--1-E-M. (3.9)

From these inverted constitutive equations follows the so-called first complementary energy
density function{34]

i 12
ZNM) =N-y+M-x-Z(, %) = %E'(N@)Nﬁ- M M), (3.10)

which, by virtue of the properties of the Legendre transformation (3.10), satisfies the
equations

ox° oxe
The same procedure may be applied to the potentials T1(u) and ®{(u), provided the inverse
operators u = u(p) and u = u(B) exist. This would result in the following relations :

‘(p) = pru~M), I =u-dp,

(3.12)
‘(B) = Bru—d(u), OD° = u- 6B.

The quantities I1° and ®° should be termed complementary work of the external forces p
and B.

Before passing to the direct examination of the functionals and variational principles,
it seems worthwhile to expose a general view of the nonlinear boundary-value problem we
have to deal with. A system of the following equations constitutes this problem:

(i) kinematic relations (2.5): ¢ = ¢(u);

(ii) equilibrium equations on # (2.11), (2.12): T(u,0)V+p = 0;

(iii) static boundary conditions along €, (2.13), (2.14): f (&, 6., oi¢) = 0;

(iv) constitutive equations (3.5): ¢ = a(¢), and the inverted constitutive equations
(3.9): ¢ =¢(a);

(v) geometric boundary conditions along %, (2.15): g(u,, u¥) = 0.

Three kinds of fields occur in the equations (i)-(v): the displacements u = {u on #;
u,, e along %}, the strain measures &= {y,%} and the conjugate stress measures ¢ = {N,M}.
There are also parameters: fixed displacements along 4, u} = {u*, a*e*} and prescribed
functions p = p(u) on .# and o¥u,) = {B,k} along €, specifying the loads with respect to
the actual displacements. All conceivable fields [u, ¢, a] form the space of states & of the
shell 2 and the equations (i)~(v) determine these particular points [u, &, 6o € &, which are
the solutions to the boundary-value problem.

Resorting to the origins of this section, let us point out that the static equations (ii)
and (iii) resulted from the variational principle 87 = 0 after substitution of the kinematic
relations (i) to {3.1). Thus, if the functional

Tu,e] = J'L [Z(e)—TH(w)]dA— f [@@)+ P (xe)]ds (3.13)

exists, the boundary-value problem (i}-(v), may be converted into an equivalent con-
strainted variational problem:

find [uy, £, 09 = 0(co)] € S such that flug, £o] = stationary valuesof I[u,e}.  (3.14)
[, cle2
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The subset 2 ¢ &

D= {[ua 8]|8—8(U) = O’g(ulc’ “*) = 0}

is the set of all feasible strain and displacement fields on .#.

4. GENERALIZED VARIATIONAL PRINCIPLES

The functional (3.13) must be supplemented by subsidiary conditions to acquire a
definite sense. Generally, such a situation is inconvenient in practical applications, where
the unconstrained (or free) formulations are preferable. Therefore in this section we shall
be mainly preoccupied with transformations leading to free functionals of the Hu-Washizu
type. To this end we shall profit from the well-known techniques developed by Courant
and Hilbert[24] and Lanczos[25]. The books[1-3, 26] lay particular stress on the application
of these ideas to mechanics. Figure 1 illustrates the procedure followed.

Let us introduce the kinematic relations (i) and the geometric boundary conditions (v)
into the functional 7 via the Lagrange multiplier rule. This operation spreads the domain
of the resulting functional /, on the whole space &

1i[u,¢,0] =JL {E-II-N-[y—y()]-M- [y —x(w)]} d4

—L [<D+‘P]ds-—L [P:(u—u*)+Mn-t* xn*]ds— i G, (u,—up, @41

for the fields of Lagrange multipliers, N, M pertaining to (i) and P, M, G, pertaining to
(v), must belong to the conjugate spaces of forces. Direct examination of the variation of
I, affirms this statement. Following the same pattern that led from (2.7) to (2.10), with
particular emphasis on the fact that the geometry of €, is already determined, we can derive
oI, in the form

e ) (-
—[r—r(u)]'5N—[x—x(U)]'5M—FTV+p]'5u}dA

+f {[Tv—B+[(F+txk)R'],,]*ou
€

N
+(/TMyv+k-t)t-6w}ds— Y, (F+t;xk)R' - du;

—L [(u—u*)-6P+n-t* xn*oM]ds— ﬁ (u,—ud) - og;
» k=]
+L {[T*v+ (F*R*),,—P] 6u+ (#*I'Mv— M)t - dw} ds

K
- Z (Fk*R“'*'Gk) * 6“;(, (4‘2)

k=1
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Fig. 1.

where F* = F(u*, 0,) and T* = T(u*, 0,). The set of the stationarity conditions for the
functional 7, contains not only the full system (i}~(v), but also includes relations identifying
the Lagrange multipliers P, M, G,, as the effective boundary force and bending moment
appearing along €, due to the imposition of the geometric constraints (v) there. These
relations placed in the last lines of (4.2) can serve to eliminate the multipliers P, M, G,
from 7, and so to unify its structure. Their substitution to (4.1) results in the following
change of the boundary part 1, of the functional /,:

L, 0] = L [@+Y¥] dS+L {[T*v+ (F*R*),,]* (u—u*)

*

K
+(JPTMY)i-#*} ds— ¥ FIR* - (g —u).  (4.3)
k=1

Similar substitution to the expression for the variation (4.2) results in vanishing of the last
lines, leaving, in consequence, only the relations (i)-(v) as the stationarity conditions of /,.

Now the constraints included in the initial problem (3.14) may be removed and the
problem itself can be restated as:

find [uq, £¢, 6] € & such that 61, [ug, &6, 05] = 0. 4.49)

This is the Hu-Washizu variational principle.
The functional I, comprises explicitly the relations of the geometric type (i) and (v).
The question arises whether it is possible to effect any transformation that would promote

explicit occurrence of the static relations (ii) and (iii). Let us point out that the following
equation holds true:

N-y(u)+M-g(u) = uT+uQ—-nI'My]*V—u-TV—-u-QV, (4.5)
where
Q = ;(u® V)[N+M-bja]—[(m—n) ® VIM+ {TM)V]x u® V)e.

Substituting this result to (4.1) and applying the Stokes theorem to the terms under the
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divergence operator [ ]V we can derive an equivalent form of the functional /,:

Jilu,e,0] = —U [(N'y+M- - —Z)+(TV+p) u+u-QV+ (M—p-u)dd+J,[u, 0],

(4.6)
where the boundary part J, is
Jb[ulm alc] = L {[TV—B+ (FR,)”] ‘U ((D—-B ’ ll)
f
N
+(Qv):u—FR'*t—n'My~¥}ds— } FR'-y,
im}
+L {[T*v + (F*R*),,] u+(Q*v)-u—F*R* ¢t
K
—nMy— (FP#*TMv)ii- 7*} dS+ Y. Fir* -u,. @7
k]

Let us note some specific features of the functional J,. Owing to the equivalence between
I, and J, the variations of both functionals are equal, 67, = 4J,, and hence their stationarity
conditions are the same. The first three terms under the surface integral in (4.6) are equal in
value to the complementary energy function X° (3.9). Besides, expressions equivalent to the
complementary work I1°and & (3.12) have appeared under the surface and the ,-boundary
integrals. Due to strong interference of rotations and arising hence nonlinearities the
equilibrium equations (iii) could be separated in the surface integrand at the cost of including
a new term Q, having the character of residual internal forces. Due to the same reason it
seems virtually impossible to handle the boundary integrands in a similar way.

A functional of this type, termed the total complementary energy functional, was
brought out in [9, 13-16]. Thus the variational principle J, = 0 may be called the principle
of generalized complementary energy.

5. DERIVED VARIATIONAL PRINCIPLES

In the original boundary-value problem (i)}-(v) the fields ¢ and ¢ can be eliminated via
substitution of the kinematic relations (i) and the constitutive equations (iv) to the static
relations (ii) and (iii), thus gradually reducing the space of states &. This process has its
reflection in the variational approach.

Both functionals derived in the previous section, I, and J,, have the same stationarity
conditions that result from (4.2). Adding them to these functionals in the form of sup-
plementary constraints and then eliminating with their help some of the variable fields does
not affect the stationarity conditions of the resulting reduced functionals. We shall apply
this procedure to obtain six subsequent free variational principles.

Let us eliminate the strains ¢ from the functionals 7, and J, by means of the inverted
constitutive equations & = g(g) (3.9). As a result we obtain two free functionals

Llu,0l = J:L (=Z(0) T+ N-yu)+ M- g(u))d4 — L [u., 0,], {5.1)

Jy[u, 0] = — [J; [Z°(0)+ (TV+p) - u+u QV+II—p-w]dA+Jlu., 0]  (5.2)
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Note that the equality 67, = 6J, is still preserved. To obtain the expression for 6/, one
should replace the first two lines in (4.2) under the surface integral, i.e. the ones containing
the constitutive equations and the kinematic relations, with the relations of the form
[e(6) —e(u)] do.

The sense of the operation just completed consists in reducing the space & to the space
& g of the pairs [u, 6] so that we may replace the problem (4.3) by a modified unconstrained
problem:

find [UQ, O'O]G.VR such that 612[“0, 60] = Ooré.lz[uO, 0'0] = 0. (53)

This is the Hellinger-Reissner variational principle.
A similar operation, based on the elimination of the stress field ¢ via the constitutive
equations in their direct form ¢ = ¢(¢) (3.5), leads to another pair of free functionals:

Iilue) = — f L {Z(e)+n—hn : [,, ® 1)+ 1318 x(u)]} dA =1l o (5]

(5.4)

Jolu, €] = — H {Z@©)+[T(u,0()V+p]-u+u: Qu, o))V

+1—p-u)}dA+Jy[u.,0(e)]. (5.5

In the derivation of J, use has been made of the relation
22(e) = N@) y+M@) % (5.6)

Again the equality 6/, = 6J¢ holds true and to obtain the variation of these functionals the
first line in (4.2), now vanishing identically, should be removed, and elsewhere the right-
hand sides of (3.5) should be substituted for N and M. The functionals I, and J, are
accompanied with a variational principle similar to (5.3).

Carrying this process on we can eventually derive a pair of free functionals depending
solely on the displacement field u. These two functionals result either from I, and J via
substitution of the kinematic relations ¢ = ¢(u), or from 7, and J, via substitution of the
compound relation ¢ = ¢(e(«)) obtained by introduction of the kinematic relations to the
constitutive equations. Both of the two ways lead to the functionals

Islu) = j L (Z(e(u) —T1) dA4 — L[, o (eu))), (5.7

Jylu] = - Hd {2[T(u, 0(e())V+p} - u+ 1Q(u, 6(e))V - u
+ (n -p u)} dA + %Jb[uln G(a(ult))]

- §£ [(®—B-u)+¥]ds—1 L (J7*TMv)i- #*ds, (5.8)

where the relations (5.6) and (4.5) have been employed additionally in the derivation of J;.
Their stationarity conditions are the static relations (ii) and (iii), expressed in displacements,
and the geometric boundary conditions (v).

The solution to the problem

find [u,) €  such that 6I[uy] = 0or 8Jfusj =0 5.9

is the actual displacement field of the deformed surface /4.
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Finally, reversing the procedure underlying the derivation of the Hu-Washizu func-
tional /; from the initial functional J, we can exclude the geometric boundary conditions
(v) from /, to obtain the functional of the total potential energy

My] = _U.a [Z(e(u))~T1]dA— L (P+¥)ds. (5.10)

In fact, IT[u] could have been obtained directly from Iu,c] (3.13) via substitution of the
kinematic relations ¢ = ¢(u) there. Therefore the variation 6I1 coincides with the left-hand
side of (2.10) after substitution of the relations ¢ = o(e(u)) for N and M. Consequently, the
stationarity conditions of IT are the static relations (ii) and (iii) expressed in displacements.
The associated variational problem can be stated as

find [uo] € % such that I1{u,] = stationary values of IT[u] (5.11)
u, €2 M

where 2, = {u,|g(u., u*) = 0}. This is the stationary potential energy principle.

Closing this section let us remark that the elimination of the displacement field u
expressed in the strains ¢ from the Hellinger—Reissner functionals 7, and J, would lead to
the complementary functionals and variational principles. However, the problem of invert-
ing the nonlinear kinematic relations ¢ = £(u) is nontrivial and has not yet been solved in
the general case. The existing solution, due to Washizu[39], reaches only as far as the
Donnel-Marguerre nonlinear theory of shallow shells. Clearly, the obstacle is of a geometric
nature, stemming from the fact that more than one displacement state u may correspond
to a given surface strain y and from the coupling between the surface strain and change
of curvature measures through the compatibility equations. It seems that the solution
should be sought in modification of the attitude towards the deformation measures
and the approach developed by de Veubeke provides with some sort of alternative here
(see [21-23)).

6. FINAL REMARKS

The functionals and variational principles presented in the main body of this paper
deserve some additional comments. First of all, they are grouped in two equivalent families
exhibiting the properties of symmetry (cf. Fig. 1). The pairs I, — J, are related by the Stokes
theorem. Their variations are always equal to each other: 8J, = dJ;. The functionals of the
# family contain the geometric relations of the theory in the explicit form, whereas those
of the # family the static relations. Consequently, either of them lays down a suitable basis
for the problems with some additional constraints of the geometric or static character,
respectively (cf. [9]).

Secondly, the question concerning the character of the stationary points should be
mentioned as still an open one. So far the conditions for attainment of infima are thoroughly
examined only in the theory of convex functionals{40] and the related theory of potential
monotone operators[26, 32, 33]. Yet the variational problems arising in the general geome-
trically nonlinear theory of shells may turn out to be nonconvex due to the interference of
the nonlinear strain—displacement relations or nonmonotonicity of the external loads.
Hence, nonuniqueness and branching of solutions should be expected. The clarification of
this question would be of essential importance for the problems of elastic stability.

Finally, if the external loads involved in the problem are nonpotential the incremental
formulations can be employed. The variational principles presented herein should prove
helpful even in this case. For these and related problems see [28].
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